CHEMISTRY LETTERS, pp. 1461-1464, 1977. Published by the Chemical Society of Japan

REACTIONS OF CYTOTOXIC NOR-DITERPENOID DILACTONES IN <u>PODOCARPUS NAGI</u>: MODIFICATIONS OF RING A FUNCTIONAL GROUPS

Yuji HAYASHI*, Takeshi MATSUMOTO*, Toshiaki HYONO*, and Takeo SAKAN**
* Faculty of Science, Osaka City University, Sugimotocho, Sumiyoshiku, Osaka 558
** The Institute of Food Chemistry, Shimamotocho, Mishimagun, Osaka 618

Chemical modifications of the ring A functional groups on the biologically active nor-diterpenoid dilactones of <u>Podocarpus</u> plants are described. Some results obtained here are different from the reported unusual properties of these unique compounds.

Some anomalies have been experienced on the reactivity of nor-diterpenoid dilactones of <u>Podocarpus</u> plants¹⁾. The dilactones constitute an important group of plant components with a wide variety of biological activities, e.g., anti-tumor activity²⁾, plant growth regulation^{3a,c,12a)}, and toxicity for insect larvae⁵⁾. In order to correlate the dilactones chemically, we have investigated thier reactivities towards various types of reagents. This paper deals with the modifications of ring A functional groups, some of which oppose the reported behavior of the lactones⁴⁾. The derivatives presented here are also important for correlation of other new analogues and determination of the structure-activity relation-ships on the biological activities.

Nagilactone $E^{3a}(\underline{1})$, the most abundant component (<u>ca</u>. 0.1% from fresh material) in the root bark of <u>Podocarpus nagi</u> Zoll. et Moritzi, was treated with POCl₃ in pyridine at room temperature to give quantitatively a phosphate ester (<u>2</u>), mp 207°, v_{max}^{KBr} 1783, 1700 cm⁻¹, which was characterized as a dimethyl ester (<u>3</u>) (CH₂N₂), mp 225°, C₂₁H₂₉O₉P, v_{max}^{KBr} 1778, 1703, 1055~1035 cm⁻¹, m/e(20 eV) 456(M⁺, 11), 441(47), 413(13), 330(36), 315(38), 287(32), 271(15), 259(18), 243(19), 229(12), 215(14). When <u>2</u> was refluxed in pyridine, an expected elimination reaction was completed in 7 h. A dehydration product (<u>4</u>)¹⁰⁾ obtained, mp 236° (sublime), C₁₉H₂₂O₅, λ_{max}^{EtOH} 219 nm (ε ;10900), v_{max}^{KBr} 1765, 1700 cm⁻¹, m/e(20 eV) 330(M⁺, 2), 287(17), 271(24), 259 (14), 243(24), 229(35), 215(37), 199(37), was identified with podolide^{2b)}, a cytotoxic principle of <u>Podocarpus glacilior</u>. In the product (<u>4</u>), irradiation of the allylic methylene protons at 2.05 ppm (H-1) exhibits 23% of NOE on H-11 signal, which indicates the 2,3-double bond.

In contrast to the reported poor reactivity on epoxidation⁴⁾, the 2,3-double bond of <u>4</u> reacted, slowly but definitely, with m-chloroperbenzoic acid in the presence of a radical inhibitor⁹⁾ (in CHCl₃, 60°, 40 h). An epoxide (<u>6</u>) was formed in an acceptable yield as a sole product, mp 275° (sublime), $C_{19}H_{22}O_6$, $\lambda_{max}^{\text{EtOH}}$ 218 nm (ϵ :9800), ν_{max}^{KBr} 1770, 1705 cm⁻¹, m/e(20 eV) 346(M⁺, 7), 318(12), 303(74), 275(68), 247(38), 229(36), 215(21), 203(29). Based on the pmr parameters of the H-1, H-2, and H-3, the configuration of the epoxide ring of <u>6</u> was assigned as 2 α , 3 α -orientation, which is epimeric to a natural dilactone (<u>8</u>)^{6,8}). An analogous result was obtained from oxidation of 16-hydroxypodolide (<u>5</u>)⁶) to give an epoxide (<u>7</u>), mp 272° (dec), $C_{19}H_{22}O_7$, ν_{max}^{KBr} 3540, 1777, 1700 cm⁻¹, m/e(20 eV) 362(M⁺, 16), 347(16), 332(24), 305(100), isomeric to sellowin A (<u>9</u>)^{4b,c)}. Thus, the ring A double bond was found to be chemically more reactive at less hindered α -side. Attempts to prepare the 2 β ,3 β -epoxide from 4 and <u>5</u> were unsuccessful.

Brown and Sanchez L. have reported the unusual reductive deoxygenation^{4b)} of a 1β , 2β -epoxy- 3β -hydroxy system with chromous chloride to form a 1,2-saturated- 3β hydroxy system. By this reaction, nagilactone C (10)^{3b)} has directly been transformed to sellowin C (14). However, the chromous ion catalyzed deoxygenation of the nagilactone under the following conditions produced a 1,2-unsaturated analogue The reaction was conducted at 30° for 4 h in DMF under pure nitrogen. (11). Use of five equivalents of the chromous perchlorate-ethylene diamine complex⁷ gave 11 in highest yield. The product (52%) was almost pure 11 without purification, and no 1,2-saturated analogue was detected. The compound (11), mp 287~9°, $C_{19}H_{22}O_6$, λ_{max}^{EtOH} 300 nm, ν_{max}^{Nujol} 3500~3300, 1750, 1695, 1630, 1550 cm⁻¹, exhibits two olefinic proton signals at 6.89(d, J = 9.5 Hz, H-1) and 6.17(dd, J=6.0, 9.5 Hz,H-2) ppm, which appear in the modified AB type¹¹⁾. About 30% of NOE between the H-1 and the H-11 was determined with a diacetate (12) (Ac₂O-pyridine), mp 248°, v_{max}^{Nujol} 1780, 1740, 1720, 1630, 1545 cm⁻¹. The olefinic alcohol (<u>11</u>) underwent hydrogenolysis (5%-Pd-C/EtOH/HClO $_{d}$) at C-3 with the concomitant double bond migration, and yielded an olefin (<u>13</u>), mp 290° (sublime), $C_{19}H_{22}O_5$, v_{max}^{Nujol} 3440, 1760, 1695, 1635, 1550 cm⁻¹. On the pmr, 13 gave a broad three-proton singlet¹¹⁾ at

								<u> </u>			
Lactones	нl	н ²	н3	н ⁵	н ⁶	н7	H11	H ¹⁴	н ¹⁵	сн*	сн3**
<u>3</u> #			4.70 br m	2.06 d (4.0)	5.18 dd (1.5, 4.0)	4.26 d (1.5)	6.22 s	4.62 d (4.0)		1.27 1.60	1.04 (7.0) 1.18 (7.0)
<u>4</u>	2.05 br d (~3.0)	5.80 dt (3.0, 3.0, 10.0)	5.90 d (10.0)	2.07 d (5.0)	5.16 dd (1.5, 5.0)	4.24 d (1.5)	6.17 s	4.61 d (4.0)		1.16 1.30	1.05 (7.0) 1.18 (7.0)
<u>6</u>	* * *	3.37 m	3.52 d (4.0)	1.86 d (5.0)	5.11 dd (1.5,	4.20 d (1.5)	6.07 s	4.53 d (4.0)		1.11 1.45	1.01 (7.0) 1.13 (7.0)
<u>7</u> †	* * * *	3.38 m	3.52 d (3.5)	1.86 d (5.0)	5.12 dd (1.5, 5.0)	4.33 d (1.5)	6.16 s	4.82 d (5.0)		1.13 1.46	1.30 (7.0)
<u>11</u>	6.89 d (9.5)	6.17 dđ (6.0,	4.53 d (6.0)	2.17 d (6.0)	5.02 dd (6.0,	5.63 d (8.5)	6.58 s		3.48 m (6.5)	1.41 1.98	1.21 (6.5) 1.29 (6.5)
<u>12</u> [#]	6.80 d (9.8)	5.88 dd (6.0,	5.56 d (6.0)	2.23 d (6.0)	4.96 dd (6.0,	6.36 d (9.1)	6.22 s		3.00 m (6.8)	1.55 1.55	1.24 (6.8) 1.26 (6.8)
<u>13</u> #	2.14 br d (~3.0)	5.88 br s	5.88 br s	2.00 d (5.5)	4.95 dd (5.5, 9.0)	5.30 d (9.0)	5.88 s		3.24 m (6.5)	1.38 1.38	1.25 (6.5) 1.34 (6.5)

Table 1. The pmr parameters of the lactones (pyridine- d_5)

* singlet methyl signals. ** doublet methyl signals. *** $H^{1\alpha}$: 1.59 dd (1.5, 14.0), $H^{1\beta}$: 2.14 dd (6.5, 14.0). **** $H^{1\alpha}$: 1.58 dd (1.5, 14.0), $H^{1\beta}$: 2.12 dd (6.0, 14.0). † H¹⁶: 4.00 dd (7.0, 10.5), 4.11 dd (4.0, 10.5). † methoxyl signals: 3.84 d (11.5), 3.90 d (11.5). # CDCl₃ as solvent.

(1) R=H

HC

- $(\underline{2})$ R= PO(OH)₂
- $(\underline{3})$ R= PO(OCH₃)₂

ЭН

- (<u>4</u>) R=H
- (<u>5</u>) R=OH

RC

Ĥ

 $(\underline{10}) R^1, R^2 = (\underline{14}) R^1 = R^2 = H$

OR

(<u>11</u>) R=H

(<u>12</u>) R=Ac

- ($\underline{6}$) 2 α , 3 α -epoxy, R=H (7) 2α , 3α -epoxy, R=OH
- (8) 2β , 3β -epoxy, R=H
- (9) 2β , 3β -epoxy, R=OH

5.88 ppm due to the olefinic protons, H-2, H-3, and H-11, analogously to podolide (<u>4</u>) and 16-hydroxypodolide (<u>5</u>). Presumably, the 2,3- rather than the 1,2-position is sterically more favorable for the ring A double bond. Selective hydrogenation of the double bond at either the 1,2- or 2,3-position was unsuccessful, because of occurrence of undesired transformations, the saturation of the ring C double bond (PtO₂)^{3a,b)} and the reductive cleavage of the 7 α ,8 α -epoxide group (Pd-C)¹²).

Notes and References

- (a) Y.Hayashi, Y.Yuki, T.Matsumoto, and T.Sakan, Tetrahedron lett., <u>1977</u>, 2953, 3637; and references cited therein.
 (b) A survey of the Podocarpus dilactones: K.S.Brown, Jr. and W.E.Sanchez L., Biochem. System. Ecol., 2, 11 (1974).
- (a) Y.Hayashi, T.Sakan, Y.Sakurai, and T.Tashiro, Gann, <u>66</u>, 587 (1975). (b)
 S.M.Kupchan, R.L.Baxter, M.F.Ziegler, P.M.Smith, and R.F.Bryan, Experientia, <u>31</u>, 137 (1975).
- (a) Y.Hayashi, J.Yokoi, Y.Watanabe, T.Sakan, Y.Masuda, and R.Yamamoto, Chem. Lett., <u>1972</u>, 759.
 (b) Y.Hayashi, S.Takahashi, H.Ona, and T.Sakan, Tetrahedron Lett., <u>1968</u>, 2071.
 (c) Y.Hayashi and T.Sakan, "Plant Growth Substances 1973", Hirokawa Publ. Co. (Tokyo), p.525 (1974).
- 4. (a) M.N.Galbraith, D.H.S.Horn, and J.M.Sasse, Chem. Commun., <u>1971</u>, 1362.
 (b) K.S.Brown, Jr. and W.E.Sanchez L., Tetrahedron Lett., <u>1974</u>, 675. (c) S.K. Arora, R.B.Bates, P.C.C.Chou, W.E.Sanchez L., K.S.Brown, Jr., and M.N.Galbraith, J. Org. Chem., <u>41</u>, 2458 (1976).
- 5. G.B.Russell, P.G.Fenemore, and P.Singh, Chem. Commun., 1973, 166.
- 6. Y.Hayashi, T.Matsumoto, Y.Yuki, and T.Sakan, Tetrahedron Lett., in press.
- 7. J.K.Kochi, D.M.Singleton, and L.J.Andrews, Tetrahedron, 24, 3503 (1968).
- 8. The corresponding β -epoxide of the natural dilactones $4^{c}, \overline{6}$ shows the following coupling constants: $J_{1\alpha,2\alpha} = 1.5$, $J_{1\beta,2\alpha} = 2.0$, $J_{1\alpha,1\beta} = 14.5$, $J_{2\alpha,3\alpha} = 4.0$ Hz.
- 9. Y.Kishi, A.Aratani, and T.Goto, Chem. Commun., <u>1972</u>, 65: 4,4'-Thiobis(6-tbutyl-m-cresol) was used as a radical inhibitor.
- All spectral data of <u>4</u> are well consistent to the reported structure of podolide. Unfortunately, the direct ir or pmr comparison was not possible, since good spectral data of natural podolide were not available.
- 11. In the 1,2-unsaturated compounds, the H-1 is more strongly affected than the H-2 by the α -pyrone ring, appearing at unusually low field (6.89 ppm), while the 2,3-unsaturated ones, e.g., <u>4</u>, <u>5</u>, and <u>13</u>, show almost overlapped olefinic proton signals: <u>4</u> (CDCl₃): 5.88(br s, H-2 and H-3), 6.00(s, H-11) ppm, <u>5</u> (CDCl₂): 5.92(br s, H-2 and H-3), 6.04(s, H-11) ppm.
- 12. (a) M.N.Galbraith, D.H.S.Horn, S.Ito, M.Kodama, and J.M.Sasse, Agr. Biol.Chem.,
 <u>36</u>, 2393 (1972). (b) Y.Hayashi and T.Matsumoto, unpublished result.

(Received October 3, 1977)